R/simulate.R
simulate_hier_dawid_skene_model.Rd
Simulate data from the hierarchical Dawid-Skene model
simulate_hier_dawid_skene_model(pi, mu, sigma, sim_data, seed = NULL)
The pi parameter of the hierarchical Dawid-Skene model.
The mu parameter of the hierarchical Dawid-Skene model.
The sigma parameter of the hierarchical Dawid-Skene model.
Data to guide the simulation. The data must be in the long
data format used in rater()
except without the 'rating' column. The data
specifies:
the number of items in the data, and
which raters rate each item and how many times they do so.
An optional random seed to use.
The passed sim_data
augmented with columns:
"z"
containing the latent class of each item,
"rating"
containing the simulated rating.
The number of raters implied by the entries in the rater column must match the number of raters implied by the passed theta parameter.
# \donttest{
J <- 5
K <- 4
pi <- rep(1 / K, K)
mu <- matrix(0, nrow = K, ncol = K)
diag(mu) <- 5
sigma <- matrix(sqrt(2) / sqrt(pi), nrow = K, ncol = K)
sim_data <- data.frame(item = rep(1:2, each = 5), rater = rep(1:5, 2))
sim_result <- simulate_hier_dawid_skene_model(pi, mu, sigma, sim_data)
sim_result$sim
#> item rater z ratings
#> 1 1 1 3 1
#> 2 1 2 3 3
#> 3 1 3 3 3
#> 4 1 4 3 3
#> 5 1 5 3 4
#> 6 2 1 4 4
#> 7 2 2 4 4
#> 8 2 3 4 4
#> 9 2 4 4 4
#> 10 2 5 4 4
sim_result$theta
#> , , 1
#>
#> [,1] [,2] [,3] [,4]
#> [1,] 0.9277802 0.0047418760 0.3103373894 2.889353e-05
#> [2,] 0.9825994 0.0961698551 0.0003368129 3.345813e-04
#> [3,] 0.8875942 0.0006904351 0.0001641961 1.707973e-01
#> [4,] 0.6564395 0.0043353800 0.0004222629 2.529998e-02
#> [5,] 0.9101537 0.0162473903 0.3300404513 1.294223e-03
#>
#> , , 2
#>
#> [,1] [,2] [,3] [,4]
#> [1,] 0.024073252 0.9857744 0.3103373894 2.889353e-05
#> [2,] 0.005800196 0.7114904 0.0003368129 3.345813e-04
#> [3,] 0.037468598 0.9979287 0.0001641961 1.707973e-01
#> [4,] 0.114520158 0.9869939 0.0004222629 2.529998e-02
#> [5,] 0.029948781 0.9512578 0.3300404513 1.294223e-03
#>
#> , , 3
#>
#> [,1] [,2] [,3] [,4]
#> [1,] 0.024073252 0.0047418760 0.068987832 2.889353e-05
#> [2,] 0.005800196 0.0961698551 0.998989561 3.345813e-04
#> [3,] 0.037468598 0.0006904351 0.999507412 1.707973e-01
#> [4,] 0.114520158 0.0043353800 0.998733211 2.529998e-02
#> [5,] 0.029948781 0.0162473903 0.009878646 1.294223e-03
#>
#> , , 4
#>
#> [,1] [,2] [,3] [,4]
#> [1,] 0.024073252 0.0047418760 0.3103373894 0.9999133
#> [2,] 0.005800196 0.0961698551 0.0003368129 0.9989963
#> [3,] 0.037468598 0.0006904351 0.0001641961 0.4876080
#> [4,] 0.114520158 0.0043353800 0.0004222629 0.9241001
#> [5,] 0.029948781 0.0162473903 0.3300404513 0.9961173
#>
# }