Summarise an optim_fit object

# S3 method for optim_fit
summary(object, n_pars = 8, ...)

Arguments

object

An object of class optim_fit.

n_pars

The number of pi/theta parameters and z 'items' to display.

...

Other arguments passed to function.

Details

For the class conditional model the 'full' theta parameterisation (i.e. appearing to have the same number of parameters as the standard Dawid-Skene model) is calculated and returned. This is designed to allow easier comparison with the full Dawid-Skene model.

Examples

# \donttest{

fit <- rater(anesthesia, "dawid_skene", method = "optim")

summary(fit)
#> Model:
#> Bayesian Dawid and Skene Model 
#> 
#> Prior parameters:
#> 
#> alpha: default
#> beta: default
#> 
#> Fitting method: Optimisation
#> 
#> pi/theta estimates:
#>                mean
#> pi[1]          0.38
#> pi[2]          0.43
#> pi[3]          0.13
#> pi[4]          0.06
#> theta[1, 1, 1] 0.91
#> theta[1, 1, 2] 0.09
#> theta[1, 1, 3] 0.00
#> theta[1, 1, 4] 0.00
#> # ... with 76 more rows
#> 
#> z:
#>      MAP Pr(z = 1) Pr(z = 2) Pr(z = 3) Pr(z = 4)
#> z[1]   1      1.00      0.00         0         0
#> z[2]   3      0.00      0.00         1         0
#> z[3]   2      0.02      0.98         0         0
#> z[4]   2      0.00      1.00         0         0
#> z[5]   2      0.00      1.00         0         0
#> z[6]   2      0.00      1.00         0         0
#> z[7]   1      1.00      0.00         0         0
#> z[8]   3      0.00      0.00         1         0
#> # ... with 37 more items
#> 
#> Log probability: -238.0047
#> Fit converged: TRUE

# }